비상경제장관회의 23-6-3

디지털 심화 시대를 이끌어갈 K-Network 2030 전략

2023. 2. 20.

관계부처 합동

순 서

I. 추진배경1
Ⅱ. 네트워크를 둘러싼 환경변화4
Ⅲ. 국내 현황 진단 분석 ······ 10
Ⅳ. 추진방향 및 비전13
♡. 세부 추진과제 17
1. 세계 시장을 선도하는 차세대 네트워크 혁신 … 17
2. 탄탄하고 안전한 네트워크 기반 강화 22
3. 튼튼하고 경쟁력 있는 산업 생태계 구축 26

Ⅰ. 추진 배경

- □ 그간 정부는 글로벌 환경변화에 대응하여 **국가적 전략 수립** 등을 통해 세계 최고 수준의 네트워크 경쟁력을 확보, ICT·네트워크 강국 도약 견인
 - * ICT 발전지수 1~2위(ITU, '09~'17년), 국가경쟁력 평가 'ICT 보급' 부문 1위(WEF, '18~'19년) < 그간의 정책 추진 현황 >

- □ 최근 디지털 사회·경제로의 전환 가속화 및 글로벌 기술패권 경쟁 심화 등으로 네트워크 수요·역할은 더욱 증가할 전망
 - 특히, 코로나 19를 통해 우리 일상을 지키고 경제 활력을 유지하는 버팀목이자 위기 극복의 첨병으로서 네트워크의 중요성 부각*
 - * OTT·화상회의·온라인 교육 등 비대면 서비스의 트래픽 급증 수요를 안정적으로 뒷받침
 - 향후 현실과 가상세계를 초월하며 지역적·공간적 한계를 뛰어넘는 혁신 서비스*가 새롭게 성장하면서 네트워크의 차세대 혁신 촉진
 - * 메타버스, 디지털 트윈, 원격조종·수술, UAM 및 자율주행/운항 기술 등 개발 및 성장
- □ 다가온 디지털 시대는 네트워크 경쟁력이 산업의 혁신과 경쟁력을 좌우하는 척도*가 될 것인 만큼 국가 차워의 긴밀한 대응 노력 중요
 - * Networks of the Future(OECD 보고서, '21) : 디지털의 미래는 고품질 네트워크 성능에 의존함을 강조
 - 우리의 강점인 **유·무선 네트워크**를 **세계 최고 수준**으로 계속 발전시켜 나가기 위한 민·관의 **선제적 투자**와 **산업 기반 조성** 등 필요
- ☞ 6G·위성 등을 연계한 **차세대 기술혁신**부터 전·후방 **산업 생태계** 활성화까지 종합적인 네트워크 미래 비전 수립 추진

참고 대한민국 디지털 전략과 同 전략 간 관계

- □ 정부는 '뉴욕 구상'을 통해 디지털 기반으로 새로운 세계 질서를 주도하는 대한민국 디지털 비전 제시('22.9.21, 뉴욕대)
 - 디지털 분야의 글로벌 선도국 지위를 확고히 하고, 디지털 모범국가의 경험·지식을 폭넓게 공유하며 혁신 방향성 구체화*
 - * 스디지털 기반 자유·연대·인권의 보편적 가치 실현, 스디지털 데이터의 공정한 접근·활용, 스디지털 개방형 생태계, 스디지털 기반 노동·일자리 개념 재정립 등

"(뉴욕 구상) 디지털 자유시민을 위한 연대" 주요 내용

심화된 **디지털 시대의 모범 국가**로서 그 **성과**를 **세계 시민들, 개도국 국민들과 공유**하기 위해, **대한민국은 국가 차원**의 역량을 **총 결집**해 추진해나갈 계획

- □ 뉴욕 구상의 첫 행보로, 디지털 경제·사회를 구현하여 세계 모범이되는 디지털 강국을 실현하고자 '대한민국 디지털 전략' 마련('22.9.28)
 - 디지털 기반 경제·사회의 구조적 혁신을 5년 내 달성하기 위한 5대 추진전략^{*} 및 구체적 정책 로드맵 제시(~'27)
 - * [•]세계 최고 디지털 역량, [•]확장되는 디지털 경제, [•]포용하는 디지털 사회, •합께하는 디지털플랫폼 정부, [•]혁신하는 디지털 문화
- □ **뉴욕 구상 및 디지털 전략**의 성공적 이행을 위해서는 디지털 변화 수용과 혁신 가속화를 뒷받침하는 네트워크 혁신이 선결 요건
 - 뉴욕 구상 실현을 향한 행보를 가속화하고, 디지털 시대를 뒷받침 하는 굳건한 토대를 마련하기 위해 「K-Network 2030 전략」 제시

참고 네트워크의 중요성

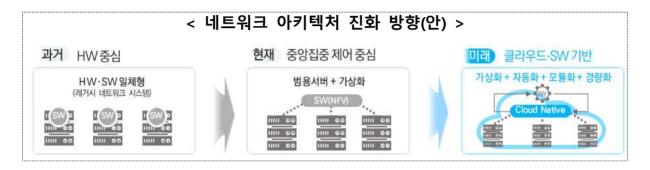
□ 네트워크는 산업·사회의 디지털 혁신을 이끄는 핵심 인프라

- 새로운 디지털 서비스와 차세대 디바이스 등의 新산업 창출 및 발전을 뒷받침하는 핵심 기반^{*}으로 글로벌 ICT 강국 도약의 일등공신
 - * 예사: (초고속망 구축) → PC, 인터넷 IPTV, OTT 등 발전 (이동통신망 구축) → 스마트폰 유튜브, SNS 발전
- 디지털 세계는 초고도 네트워크를 통해 시공간의 한계를 뛰어넘어 모든 것을 연결하고 무한히 확장시켜 국가 경제·사회에 혁신 촉진

□ 산업 파급력이 높은 국가기간산업으로 꾸준한 성장 잠재력 보유

- 첨단 기술과 대규모 인프라 구축이 필요한 기술 집약적 장치 산업으로, 차세대 기술 선점을 위한 선제적 투자* 노력이 중요
 - * 새로운 기술 개발부터 상용화 확산까지 약 7~10년의 장시간 소요로 선제적 투자가 중요
- 세계적으로 거대한 시장을 형성하고 있으며, 차세대 기술 혁신에 따른 인프라 고도화 수요를 바탕으로 지속적 성장 잠재력 보유

□ 국가 경제·사회의 필수재이자 디지털 주권의 보루


- 네트워크 이용 시간이 증가함에 따라 네트워크는 공기와 같은 삶의 필수재로서 누구나 활용하고 누려야 하는 기본 요소*로 부각
- * OECD 브로드밴드 연결성 권고안(21.2): 디지털 격차 해소 및 브로드밴드 구축 장벽 완화 등 권고
- 미래 성장 동력 확보 및 기술 패권 경쟁의 주도권 선점을 위한 전략 기술로서 국민 경제와 통신 주권을 좌우하는 경제·안보의 보루*
 - * 美·日 등은 공급망·경제·안보 등 관점에서 네트워크를 핵심 기술 분야로 선정

Ⅱ. 네트워크를 둘러싼 환경 변화

1. 클라우드·SW 중심의 네트워크 패러다임 변화

◇ 클라우드·SW 기반의 새로운 네트워크 구조 부상

□ 클라우드·컴퓨팅 및 오픈소스(SW) 기술 등의 발전·보편화에 따라 네트워크는 HW 중심에서 SW 중심으로 구조적 변화 발생

- 네트워크 장비는 용도·목적에 맞게 개발된 전용 장비(HWSW 일체형) 에서 클라우드 인프라 기반의 네트워크 SW 기술로 진화
- 모바일 코어(Core), 무선 접속(RAN), 광 접속(PON) 등 네트워크 제어· 관리 기능이 클라우드 인프라를 활용한 SW 기술로 구현·활용
- **클라우드·SW**化된 네트워크는 **클라우드**의 **이점**(고가용성·확장성)을 활용하여 최적의 **네트워크 자원**을 이용자에게 **효율적**으로 제공
- 특히, 네트워크 기능의 가상화·모듈화·경량화를 통해 네트워크 인프라 구축 및 확장, 운용 자동화, 에너지 절감 등 가능

< 클라우드·SW기반 네트워크 인프라의 주요 특징 >

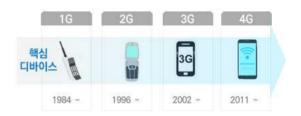
<기존 환경> <클라우드·SW 기반 환경> 구분 • 용도별 전용 HW 및 OS. 네트워크 ▶ 범용 HW 및 OS 등을 공동 활용 경량화 SW 등 일체형 구조 → 네트워크 SW 경량화 가능 • 네트워크 기능을 수행하지 않아도 ➡ - 네트워크 기능 작동시에만 컴퓨팅 효율성 자원 할당, **에너지 효율**↓ 자원 할당 → **에너지 효율 향상** • 다양한 제조사 장비간 **상호운용성** ▶ 네트워크 SW의 기능별 모듈화 확장성 → 단시간 확장 및 설치 자동화 가능 확보 및 안정화에 많은 시간 필요

◇ 네트워크 SW化를 통한 새로운 산업 생태계 혁신

- □ (경쟁 생태계) 빅 블러(Big Blur) 시대, 네트워크를 둘러싼 다양한 산업과 기업이 경계 없이 경쟁하는 새로운 생태계가 도래
 - 구글·아마존·MS·퀄컴 등 **빅테크 기업의 이동통신시장 진출**로 기존 통신사업자·네트워크 장비 기업 등과 **경쟁·협력 본격화**

구글	아마존	MS	퀄컴
▶5G 특화망 솔루션 공개(22.6)	▶ AWS Private 5G 출시(21.12)	・AT&T社 5G 코에망 구축 협력	▶5G 통신 기업* 인수 _(*22.6)
- 베타컴, 셀로나 등 협업	▸ dish社5G RANy코어구축 협력	・5G 솔루션Azure for Operators) 출시	* 셀와이즈 와이어리스 테크놀로지

- 글로벌 장비 기업도 클라우드·가상화·AI를 접목한 네트워크 솔루션 출시* 등 기존 HW 중심에서 탈피하여 SW 기업으로 전환
 - * (사스코) 코라우드 기반 NW 구독 서비스 개발(21), (노키아) 구독형 코라우드 NW 서비스(SaaS) 시장 진출(21) 등
- □ (개방화) 특정 제조사의 종속성을 낮추고 다양한 기업에 새로운 시장 참여 기회를 제공 할 수 있는 개방형 무선 접속 장비 기술* 부각
 - * ORAN(개방형 무선접속망) : 서로 다른 제조사의 기지국 장비를 상호 연동할 수 있는 기술



- 美·英·日 등 장비 경쟁력이 약한 국가 및 통신사·SW·플랫폼 기업 등을 중심으로 관련 기술 개발 및 장비 도입 논의 본격화*
 - * O-RAN Alliance('18.2~, 민간연합체), 미국 ORPC('20.5~, 미국 등 11개 국가 56개 기업 참여)
- □ (AI 응합) 네트워크 복잡도 증가, 데이터 트래픽 급증 등으로 네트워크 자원의 효율적·안정적 운영·관리를 위해 AI 기술 도입·확산
 - 사고·장애의 자체적 진단·조치 및 사용자 중심의 유연한 네트워킹 서비스 모델(NaaS*) 등 지능화·자동화된 네트워크 활성화 촉진
 - * Network as a Service : 네트워크를 서비스 형태(구독형)로 제공하는 방식

2. 新디지털 서비스 성장으로 네트워크 수요 역할 증대

◇ 디지털 시대 새로운 융합서비스 등장

- □ (성장동인) 그간 서비스·디바이스의 출현이 네트워크 발전과 수요를 견인
 - 유선 네트워크 수요는 PC 보급 및 온라인 서비스의 발전과 연계되어,
 '모뎀 → ADSL → 광케이블' 등 인프라 기술 발전 견인
 - 무선 네트워크는 **휴대폰**의 등장 (1G~3G)과 **스마트폰**으로의 진화 (4G)에 따라 지속 **발전·고도화**

- 미래에도 국민의 삶을 바꿀 수 있는 새로운 서비스·디바이스가 출현하면서 네트워크 기술·산업 발전을 촉진할 전망
- □ (新서비스 성장) 디지털 시대, 네트워크를 통한 연결성이 확장되면서 지역적·공간적 한계를 뛰어넘는 다양한 혁신 서비스가 성장 전망
 - 이종 기술·산업 간 융합으로 기존 서비스가 고도화되면서, 그간 상상 속에만 존재했던 서비스들이 비로소 현실화·상용화될 전망
 - 3D 가상공간 등 융합기술의 발전으로 **네트워크 연결성**을 기반으로 하는 **가상융합형**, 공간·지역 초월형 서비스 등이 새롭게 대두
 - 또한, **홀로그램 기기, UAM, 지능형 로봇** 등 **네트워크에 연결**되어 대량의 데이터를 소비하는 **디바이스**(Connected Machine)가 **증가**할 전망
 - * 스마트폰을 비롯한 차량, 가전, 로봇, 제조시설 등 다양한 사물기기가 네트워크에 연결(6G 백서, '20) < (예시) 미래 혁신적 서비스 >

◇ 기존 한계를 극복하는 네트워크 혁신 요구

- □ (성능혁신) 새로운 디지털 서비스 등의 등장에 따라 이를 실현하기위한 네트워크 요구사항도 증가하면서 기술적 성능 혁신 촉발
 - 급증하는 트래픽의 안정적 처리·
 연결성 확대를 위한 네트워크 수요가
 더욱 증대되며

- 단순한 속도 향상을 넘어 **지연 없는 서비스**, **공간초월 서비스** 등 기존 한계를 뛰어넘는 **네트워크 서비스 요구 수준 상향**
 - 특히, 기존에 지상의 유무선 네트워크에 국한된 방식에서 탈피하여위성통신망, 지상-공중 통합망 등 공중 커버리지 확대 요구

< (예시) 미래 서비스 관련 네트워크 요구 수준 >

- □ (新기술 요구) 네트워크 인프라의 에너지 소비 최적화 및 네트워크 장애·보안 위협 등에 대응하는 혁신 기술도 새롭게 부각
 - 높은 주파수 사용 및 기지국 밀집도 증가 등으로 네트워크 장비의 전력 소비량이 지속 증가*함에 따라 탄소 중립 이슈가 부상
 - * 5G의 전력 소모량(동일 면적 대비)은 4G대비 약 2배 이상 증가(에릭슨, '20)
 - 네트워크 연결 확산 및 보안 위협의 고도화·지능화에 따라,
 신뢰할 수 있는 인프라 제공을 위한 네트워크 보안 기술의 중요성 대두

< 2030 이후 미래 이동통신 네트워크 기술 트렌드 전망(ITU, '22.6) >

3. 글로벌 기술패권 경쟁, 네트워크 중심으로 확대 · 심화

◇ 美-中 기술패권 경쟁으로 미래 산업 지형 변화

- □ (신냉전) 美-中이 기술패권 총력전을 전개하는 가운데, 기술혁신과 국제질서 변혁이 동시에 나타나며 기술 신냉전*이 새롭게 대두
 - * 유럽 12개국 대상 여론조사 결과, 62%가 美中 기술 신냉전 발생을 인식(유럽외교위원회, '21.9)
 - 양대 강국의 패권경쟁 심화 속, 각국은 **디지털 첨단 기술을** 경쟁 승패를 좌우하는 핵심 자산으로 인식하며 **대규모 투자 집중**

· 반도체 투자 520억불
· 반도체 세제혜택 240억불
(반도체법, '22.8)

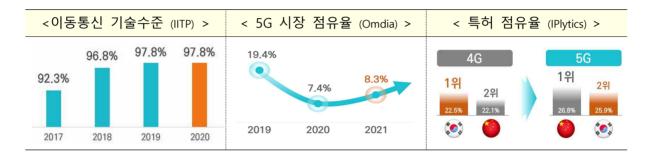
· 반도체 투자편드 289억 (편드 2기, '19) · 소부장 자급률 70% (~'25)

- 또한, 러-우 전쟁 등이 더해지며 대외적 불확실성*이 증가, 흔들리지 않는 기술 주권 확립을 위한 자국내 공급망 확보에 주력
 - * 러·우에서 생산하는 반도체 공정 필수 원자재(네온, 크립톤 등)의 수급차질 우려 등
- □ (동맹국 공조) 한편, 글로벌 패권경쟁이 동맹국과의 연대로 확대 되면서, 경제·안보를 넘어 첨단 기술 분야로 공조가 확산되는 추세
 - **팍스 시니카**(중국패권 시대) 대두 속, **화웨이 제재***(국가 안보 이슈)로 **촉발된 美·中**의 기술패권 경쟁은 동맹국 간 공조로 대응 확산
 - * (美) 화웨이 5G 장비용 부품 수출 금지('21.3), (英) 화웨이 장비 신규 설치 금지('21.9) 등
 - 특히, 핵심기술을 보유한 **글로벌 국가 간 기술동맹**(기술블록화) 움직임이 확산*되며 **'동맹內 공유, 동맹外 통제'**가 현실화

◇ 네트워크 주도권 선점을 향한 치열한 레이스 본격화

□ (전략기술化) 주요국은 차세대 네트워크를 국가 경제발전과 디지털 혁신의 핵심 인프라로 인식. 국가 전략기술로서 지워을 강화

○ 특히, 5G 고도화 및 6G, 위성 등 차세대 네트워크 기술 선점을 위한 R&D 및 인프라 투자를 확대하며 국가적 역량을 결집


- 한편, 글로벌 기업도 정부 정책에 연동하여 차세대 기술력 확보 및 시장 선점을 위한 준비(R&D 투자, 비전 수립 등) 본격화
 - * (美, AT&T) 5G-Adv, 6G용 초고주파 장비실험('22.4), (中, 화웨이) '30년 6G 제품 출시계획 발표('21.9), (日, NTT도코모) 자체 6G 광전송기술 '아이온' 공개('21.11) 등
- □ [기술자립化] 통신주권 확보가 주요 쟁점으로 부상하며, 주요국은 독자적인 네트워크 경쟁력을 갖추기 위한 소·부·장 기술력 확보 주력
 - 특히 부품 수급 문제가 미치는 영향이 커짐에 따라, **대외 의존도**를 낮추기 위한 **안정적 공급망 확보**가 **국가 전략의 화두**로 부상

바이 아메리카 ('21)	★ ‡	홍색공급망 (~'25)		공급망 강화대책 (21)
· 자국산 구매비율 상향 ('22년 60%→ '29년 75%) · 美조달시장의 구매조건 강화	수급	내 필요한 제품의 자체 ·생산 지원 ·장 자급률 70% 달성	억업	스트5G 연구개발 710 겐 투자(경산성, '21) 낼비 도입시 사전심사도입

Ⅲ. 국내 현황 진단 분석

◇ 네트워크 패러다임 변화에 대응하는 준비가 시급

- □ (기술 역량) 국내 네트워크 기술 경쟁력은 지속 향상 중이나 아직 선도국과 격차가 존재하며, 일부 품목에 한정된 경쟁력 보유
 - * 최고국(미국) 대비 기술수준(IITP, '20) : 무선 97.8%, 유선 88%, 전파위성 85.4%, 양자 85.2%
 - 특히 이동통신 분야는 꾸준한 투자와 선제적 상용화 노력 등으로 경쟁력을 보유 중이나, 경쟁국·기업의 투자 강화로 추월 위기

- □ (첨단 기술) 6G·위성·양자 등 차세대 네트워크 기술 선점을 위한 준비가 경쟁국 대비 늦고, 투자도 부족하여 글로벌 경쟁에 뒤쳐질 우려*
 - * △美中 보다 3년 늦게 6G R&D 착수('21~), △저궤도 통신위성(인터넷위성IoT용 등) 개발경험 無 등
 - 6G는 미래 네트워크 경쟁의 최대 격전지로 상용화 시기도 당겨질 전망('30→'28)이나, 경쟁국 대비 작은 투자 규모*로 한계점 존재
 - * (美 2,500억원'17~'21) + 2조 9천억원 추가 투자 발표(21, 약 10년), (日) 6,100억원'(21~'26), (韓 1,917억원'(21~'25)
- □ (SW 전환) 네트워크는 클라우드·SW 기반으로 가상화개방화지능화 되고 있으나, 우리는 HW 중심 기술 개발과 인프라 투자로 준비가 부족
 - 특히, 오픈랜 등 개방형 기술이 기존 장비를 대체하며 본격화*될 전망이나 국내 제조사는 일부 기술 확보 초기 단계에 불과
 - * (美) 통신사 DISH는 5G망에 오픈랜 적용('21.4~), (日) 통신사 NTT Docomb는 '22년부터 오픈랜 상용 적용 등

◇ 디지털 혁신을 뒷받침하는 네트워크 인프라 환경 고도화 필요

- □ (기반 시설) 디지털 시대, 인터넷 트래픽이 폭발적으로 증가할 전망이나, 현재의 망 구조 및 용량으로는 수요 증가에 대응 곤란
 - * (인터넷 트래픽) '21년 2,853Tbps → '27년 17,477Tbps, 6배 증가 전망 (telegeography)
 - 체감 인터넷 품질(속도)은 구내통신설비가 좌우하나, UTP케이블 아직도 UTP 케이블(구리선 기반)이 다수 설치*되어 있어 이용자 품질 향상 한계

- * '20년 준공아파트(36만세대) 중 UTP 배선이 약 52.5% (19만 세대) 차지
- 유·무선 트래픽 증가에 대응하여 백본망을 고도화하고 있으나, AI·SW(SDN) 기반의 최적화·자동화 기술 등 도입·활용 부족
 - * 통신사업자 백본망은 SDN 기술을 관리 도메인 등에만 적용 → 제어 영역 등 활용 부족
- □ (탄소중립) 네트워크는 지속적 전력 공급이 필요한 산업으로, 통신 사업자의 전력 소비량은 서비스업 중 가장 높은 수준
 - * 통신사는 전국 전력 사용량 2% 차지, 탄소배출량은 非제조업:발전산업 중 가장 많음('21년 355만)
 - 향후 5G·6G 기지국의 주파수·출력 증가 및 클라우드·SW化에 따른 데이터센터 구축에 대비하여 에너지 절감을 위한 대책 필요
- □ (안전·신뢰) 네트워크의 역할과 중요성이 점점 커지고 있으나, '국가 핵심 인프라'에 걸맞은 안전성과 보안 신뢰성 미확보
 - 기존의 지역적·물리적 통신재난이 아닌 작업오류로 인한 네트워크 장애* 등 전국적·관리적 통신재난의 예방·대응 체계 미흡**
 - * 한국 KT('21.10.), 일본 NTT도코모('21.10.), KDDI('22.7.), 캐나다 Rogers('22.7.) 등 대규모 장애 발생
 - ** 현재 재난 대응 규정은 방송통신발전기본법, 전기통신사업법, 정보통신망법 등 여러 법령에 분산
 - 네트워크 장비의 **구조적 변화**(가상화클라우드화 등)로 **보안 위협**도 더욱 **증가할 전망*이나 위협을 탐자·대응** 할 수 있는 관리 **구조·기술** 부족
 - * 네트워크 구조:기능의 이원화 및 서비스 확장 등으로 보안은 더욱 복잡해지고 공격 접점도 증가

◇ 시장 변화를 고려한 대응 역량 및 국내 산업 新성장 기반 확보 필요

- □ (생태계) 국내 장비 기업은 대부분 중소업체*로 미래 시장에 대한 전략적 대응이 부족하며, 내수 중심의 산업 구조 등으로 성장 한계
 - * 국내 기업은 총 472개, 매출 1,000억원 이상은 S社를 제외하고 10개 불과(유비쿼스, KMW 등) - 5G·기가인터넷 등 국내 대규모 인프라 투자 수요 감소(국내 시장 '19년 4.3조 → '20년 3.4조원)
 - 낮은 R&D 투자역량·규모와 중·저가형의 단품장비(HW) 중심*으로, 클라우드·SW 등 환경 변화를 고려한 시장 대응 한계

- 국가 주도 R&D로 인해 민간 수요와 연계한 기업 중심의 상용화 ·레퍼런스가 부족*하여 연구 성과물의 사업화 성과 창출도 미흡
- * 그간 국가 R&D는 원천기술연구에 집중(학연), 기업 중심 과제는 유선 21.1%, 무선 18.4%에 불고(17~21)
- □ (공급망) 네트워크 장비 핵심 부품(칩, OS 등)의 해외 의존도가 높아, 대외 불확실성 증가에 따른 납기지연·생산차질·제품 경쟁력 저하 위험 직면
 - 특히 5G의 경우 최초 상용화에도 불구하고 대·중소기업간 협업 부족 으로 인해 단말·기지국 장비에 들어가는 핵심 부품의 자립화 미흡*
 - * 기지국 장비 중 전력증폭기(PA) 등 고가 RF 부품의 95% 외산 의존, 광원소자(Laser Diode)·광검출기(Photo Diode) 등도 전량 美, 日 등에서 수입 중
- □ (인력수급) 5G·6G·위성·양자 등 네트워크 기술 발전·고도화에 따라 인력 수요는 지속 증가하고 있으나, 공급 부족*으로 인력 수급 애로
 - * 5년간 누계('20~'24)로 인력 수요(1.76만명)가 공급(1.56만명)보다 많아 약 2,000명 부족(직능원 '20)
 - 특히, 향후 오픈랜AI 등 신기술 도입으로 HWSW 역량을 갖춘 인력 수요가 급증할 전망이나, 우수인재 영입 곤란*, 실무인력 부족 등 한계
 - * 예시 : ICT 인력의 관심 학습 분야에서 통신·전파는 8% 수준으로 상대적으로 저조(SW:AL 61.5%)

Ⅳ. 추진방향 및 비전

1. 추진방향

◆ 디지털 국가를 견인하는 핵심 인프라로서 '기술은 선도'하고,'기반은 강화'하며, '산업은 성장'시키는 종합적 미래 비전 제시

① [기술선도] 세계 시장을 선도하는 차세대 네트워크 혁신

○ 네트워크의 **클라우드·SW화**, 개**방화**, 지능화 등 환경변화를 고려하여 6G·위성·양자 등 차세대 기술 선점을 위한 국가적·선제적 지위 강화

② (기반강화) 탄탄하고 안전한 네트워크 기반 강화

○ 네트워크 수요 증가에 대비하여 고성능 서비스 수용이 가능하며 안전하고 신뢰할 수 있는 세계 최고 품질의 인프라 구축·운영 추진

③ (산업성장) 튼튼하고 경쟁력 있는 산업생태계 구축

○ 네트워크 산업 패러다임 전환에 대응한 SW·오픈랜 등 신기술 기반 산업 경쟁력 강화를 통해 국내 산업 생태계 활성화 및 적극적 해외진출 추진

2. 비전 및 추진전략

디지털 심화 시대를 이끌어갈

차세대 네트워크 모범 국가 실현

3 대 달 성 목

@ 세계 최고 6G 기술력

6G 표준특허 30% 점유 ('22) 세계 2위 → ('30) 세계 1위 세계 최초 Pre-6G 시연 ('26) 기술시연 **→ ('28~'30) 상용화**

SW기반네트워크 혁신

글로벌 강소기업 20개 육성 ('22) 5개 → ('30) 20개 이상

☑ 네트워크공급망강화

6G · 위성 · 양자 · 백본망 핵심 부품 독자 기술력 확보 ('22) 외산 의존→('30) 독자 기술력확보

3대 분야 9개 주요과제

추

기술선도

세계 시장을 선도하는 차세대 네트워크 혁신

- 차세대 6G 이동통신 기술 선도
- 지상을 넘어 하늘까지 연결하는 위성통신 경쟁력 확보
- 3 네트워크의 새로운 도전, 양자통신시장 선점

진 2.

전

랻

기반강화

탄탄하고 안전한 네트워크 기반 강화

- 고성능 서비스 수용을 위한 기반 고도화
- 1 네트워크 저전력화를 통한 탄소중립 기여
- 안전하고 신뢰할 수 있는 네트워크 구현

3.

산업성장

튼튼하고 경쟁력 있는 산업 생태계 구축

- 1 클라우드 · SW 기반 네트워크 산업 경쟁력 강화
- 2 안정적 공급망 구축을 위한 소부장 경쟁력 확보
- 3 기술 혁신을 이끄는 차세대 전문인재 양성

참고 전략 목표 개요

세계 최고 수준의 6G 네트워크 기술력 확보

□ 6G 기술·표준 선도

연도 국제 표준특허 점유율

2022 (5G) 25.9%, 세계 2위 2030

(6G) 30%, 1위 달성

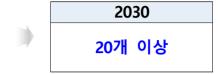
- 그가 꾸준한 투자로 4G, 5G에서 세계적 기술력*을 유지하고 있으나, 주요국의 대규모 R&D 투자 강화 등으로 경쟁 심화
 - * 표준특허 점유율(IPIvtics): (4G) 韓22.5% 1위, 中(22.1%), 美15.8%, (5G) 中(26.8%), 韓25.9% 2위, 美17.7%
- ☞ 통신 표준특허가 미치는 파급력·중요성을 고려. 민·관의 기밀한 협력과 대규모 투자 등을 통한 세계 1위 표준특허 점유 목표
- □ 6G 상용화 선도

연도 상용화 단계

2021 6G 착수

2026 Pre-6G 시연

2028~2030 6G 상용화

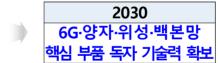

- 6G는 디지털 산업의 차세대 핵심 전략 기술로서 기술 선점을 향한 국가간 경쟁 심화로 글로벌 상용화 시기도 앞당겨질 전망('30→'28)
- ☞ 한발 앞선 기술 혁신과 대규모 민·관 합동 투자를 통해 '26년 세계 최초 Pre-6G 기술을 시연하여 6G 상용화 주도권 선점
 - (Pre-6G 시연) 6G 초기 연구 성과에 대한 검증 및 기술 시연을 위한 "(가칭)6G Vision Fest" 개최
 - (6G 상용화) 2030년 부산엑스포 유치 시, 6G를 기반으로 메타버스 서비스 등과 연계한 대규모 상용화 기술 시연 행사 추진

[목표2] SW 기반 네트워크 혁신

□ 글로벌 네트워크 강소기업 육성

연도
글로벌 강소기업
(매출액 1,000억원 이하,
수출액 500만불 이상)

2022	
5개	


- 네트워크 산업 생태계가 클라우드·SW·오픈랜 등 혁신 기술 중심 으로 전환되고, 글로벌 공급망 재편 등 대내외 환경 변화 가속
 - * 코어·기지국 장비의 SW화(가상화) 및 AI 기술 적용을 통한 지능화 등 新기술 활성화
- ₩ 위주 산업 구조를 탈피하고 대내외 환경 변화에 기민 하게 대응할 수 있도록 강소기업 생태계 육성 목표 설정
 - 클라우드·SW·오픈랜 등 신기술 역량을 갖춘 글로벌 네트워크 강소기업(매출액 1,000억원 이하, 수출액 500만불 이상) 20개社 육성 목표

[목표3] 통신 주권 강화를 위한 네트워크 공급망 확보

□ 핵심 부품 자립화

	연도	
핵심	부품	자립화
(6G⋅S	통자·위성	d·백본망)

2022 외산 의존

- 통신장비의 핵심 부품은 대부분 외산에 의존하고 있으며, 양자· 위성통신기술 핵심 부품 기술력도 확보하지 못한 상태
 - * 기지국 내 고가 RF 부품 및 단말 내 RF FEM 등은 美·日이 95%이상 점유, 국내 에서 상용화한 광통신 프론트홀 장비도 핵심 광원소자 등은 전량 해외 수입 중
- ☞ 대외 의존도를 줄이고, 부품 수급 안정성과 공급망을 강화 하기 위한 6G 핵심 부품 독자 기술력 확보 추진

Ⅴ. 세부 추진과제

세계 시장을 선도하는 차세대 네트워크 혁신

[1-1] 차세대 6G 이동통신 기술 선도

◇ 세계 6G 기술·표준 선도를 위한 핵심기술 개발 투자 및 표준 역량 강화, 국제협력, 추진체계 구축 등 대규모·선제적 지원 확대

① [핵심기술 확보] 6G 기술·표준 선도를 위한 핵심 분야 전략적 지원

○ (개발전략) 기존 원천기술 연구에 더해 상용화, 소·부·장 및 오픈랜 기술개발을 병행 추진하여 기술패권 경쟁에 본격 참여(6,253억원 예타 조기 착취

< 6G 기술개발 방향 >

6G 원천기술개발

('21~'25 / 총 1,917억원)

▶ 5대 분야 원천기술 개발 (초성능·초대역·초정밀·초지능·초공간)

차세대 네트워크(6G) 산업기술 개발 ('24~'28 / 총 6,253억원, 예타 심의 중)

- ▶ 6G 상용화 기술 개발·시연
- ▶ 소·부·장 및 오픈랜 장비 기술 등 확보
- ▶ 국제 표준화 등 산업 기반 조성
- Upper-mid 대역(7~24Ghz), 클라우드·AI Native化 등 새롭게 대두된 핵심과제를 추가하여 연구개발 방향을 재편하고, 향후 선제적 기술 시연('26, Pre-6G)을 통해 글로벌 6G 기술·상용화 선도 기반 확보

< 세부 연구내용 재편 방안 >

6G 원천기술개발

- ▸ Sub-Thz 중심 연구
- ▶ SW·클라우드 **미포함**
- ▶ 표준화 대응 **미포함**
- ▶ 커버리지 **확대** (상공 10km)
- ▶ Al 기술 **적용**
- ▶ 광통신 **원천기술**
- › 종단간 **지연** 감소

차세대 네트워크(6G) 산업기술 개발

- ▶ Upper-mid band (7배~24배) 연구 추가
- → Cloud Native 기반 코어망·기지국 SW 개발
- ▶ ITU·3GPP **국제 표준화 대응** 지원
- ▶ 저전력 기반 **커버리지 고도화**(음영지역 등)
- ▶설계 단계부터 AI 기반(Native)으로 개발
- ▶ 광통신 핵심 부품 상용화 기술 확보
- ▶ 네트워크 성능보장 기술 개발

신규

② (표준역량 강화) 국내 우위기술의 표준·특허 반영을 위한 선제 대응

- (표준 선도) 6G 표준화 시작 前, 6G 브릿지 기술(5G Adv)의 표준화
 ('22~)부터 선제적으로 체계적인 국제 표준 개발* 추진
 - * R&D 성과목표 설정 및 표준 전담 연구실 운영('24~) 등을 통해 연구 성과물의 국제 표준화 적극 대응 < 6G 국제 표준화 일정 >

국제표준화	6G 비전수립	6G 요구사항 정의	6G 후보기술 제안/평가	6G 표준 체택
	2022 2023	2024 2025 2026	2027 2028	2029 2030
기술규격화	5G-Adv 기술 규칙	ቹ 표준화 (Rel_18~20)	6G 기술 규격 표준화(Rel	_21~)

- (리더십 확보) ITU/3GPP 등 국제기구 내 신규 의장단 진출 적극 대응* 및 국제 표준회의 유치 등 6G 국제 표준화 주도권 강화
 - * ITU/3GPP내 의장단 현황 분석 및 핵심 의석 진출 방안 검토, 인적 네트워크 확대 등 추진

③ (국제협력) 6G 공동연구 및 민간 교류·협력을 확대하고 글로벌 연대 증진

- (공동연구) 표준화 시작 前 해외 주요국과 공조체계 강화를 위해6G 원천기술 및 상용화 기술 등의 국제 공동연구 협력 확대 추진
 - * 현재 미국 영국 등과 6G 및 오픈랜 공동연구 中총 7건) → 향후 EU 등과 에너지 절감 기술 등 공동연구 확대
- (교류협력) 민간 전문가 교류 및 국가 간 협력 확대를 위한 국제 행사를 개최하고, 이를 계기로 글로벌 6G 민간단체와 협력체계 구축 확대*
 - * 美('21, NGA), EU('22, 6G-IA)와 MOU 체결(5G 포럼) → 향후 中, 日 등으로 확대 추진
- (글로벌 연결성 기여) Asi@Connect* 및 APIS** 프로젝트에 참여하여 유럽-아시아 연구·교육망 연결 확대와 아태지역 연결성 확대에 기여
 - * Asi@Connect : 유럽-아시아 연구·교육망 연결·확대 및 ICT 활용 촉진 프로젝트
 - ** APIS(Asia-Pacific Information Super-Highway) : 아태지역 연결성 확대 프로젝트
 - 개도국의 네트워크·ICT 정책역량 지원을 확대*하여 네트워크·ICT 선도국으로서의 정책 경험 공유·확산 추진
 - * ICT·보안·전파 분야 개도국 지원: '23년 155억원 → '26년까지 2배 확대 추진

④ (추진체계) 민·관 협력 중심의 체계적 사업 기획·관리 및 성과 확산

- (민간역할 확대) 6G 상용화 및 민간 파급 효과 극대화를 위해 민간 기업의 R&D 참여 비중*을 확대하고 학·연 및 대·중소 협력 강화
 - * 출연연·대학·기업 연구 참여 비율: 71% / 18% / 9% ('22년) → 25% / 12% / 60% ('24년)
- **(융합 촉진)** 6G와 이종 산업 간 융합 촉진을 위한 '6G 그랜드 컨소시엄'을 구성·운영하여 6G 상용화 초기부터 다양한 융합서비스 제공 추진

[1-2] 지상을 넘어 하늘까지 연결하는 위성통신 경쟁력 확보

◇ 미래 통신서비스의 공간적 확장(지상→공증) 에 대비, 독자적 위성통신 경쟁력 확보를 위한 시범망 구축 및 핵심기술 자립화 추진

① (시범망 구축) 국제 표준 기반, 저궤도 군집 위성통신 시범망 구축

- 지상-위성 통합 표준화 단계에 맞추어 만·군 협력을 통해 저궤도 위성통신 핵심기술을 개발하고, 위성통신 시범망 구축 및 민·관 서비스 실증 추진
 - * 민간 기술 軍 적용(Spin-on): 차세대 통신 표준 기반 저궤도 위성통신 기술 軍 기술 민간 활용(Spin-off): 국방 분야 위성통신 공통기술(RF/안테나 등)
 - '27년에 저궤도 통신위성을 시험 발사하여 안테나·모뎀 등 핵심 기술을 실증하고, '30년 이후 국방 분야에 본격 확산 추진

< 저궤도 위성통신서비스 실증 대상 >

② (기술 자립화) 통신서비스의 공간적 확장을 위한 핵심 기술 자립화

- (핵심기술 확보) 저궤도 군집 위성통신 시스템 구축에 필요한 안테나, 모뎀 기술 등 핵심기술 자립화
 - 위성통신장비 기술 자립화를 통해 위성산업 생태계를 형성하고,
 성장 잠재력이 높은 저궤도 위성통신 시장 진출 도모
 - * 위성통신 시장 : '18년 540억불 → '30년 2,150억불(모건스탠리, '17년)
- **(위성 자원 확보)** 저궤도 위성통신을 위한 최적 궤도(운영고도, 경사 각도 등 고려) 설계를 통해 적정 주파수 대역* 등 선제적 확보 추진
 - * 국제 표준화 동향을 고려하여 저궤도 위성통신을 위한 적정 주파수 대역 발굴 추진

[1-3] 네트워크의 새로운 도전, 양자통신시장 선점

◇ 양자 인터넷에 대한 도전적 연구를 추진하고, 양자암호통신기술을 고도화·확산하여 양자통신 강국으로 도약

① [양자암호통신] 유·무선 하이브리드 양자암호통신 기술 개발·확산

- (기술개발) 양자암호통신 전송거리 확장·전송효율 향상 기술 개발*(~'25)
 - * 양자암호통신 집적화 및 전송기술 고도화 사업('20~'25)
 - 무선양자암호통신 전송기술을 확보하고('23~), 유선양자암호통신과 연계하여 서비스 범위 확대('26~, 양자통신드론·항공기·위성 등)
- (산업화 촉진) 양자암호통신기술의 시험·검증을 위한 유·무선 통합 테스트베드 구축과 국제 표준화 연구·대응 등 기반 조성('23~)
 - * 양자산업생태계기반 조성사업('23~), 양자 인터넷 핵심원천기술개발사업('23~)
 - 양자암호통신 상용화 및 제도정비*('22)를 기반으로 공공분야
 양자암호통신 인프라 확산 본격화 추진
 - * 공공분야 양자암호통신장비 구축을 위한 보안적합성 검증 기준 마련('22.11)

② (양자인터넷) 도전적 연구를 통한 양자인터넷 시범망 구축

○ **양자 중계기** 등 핵심 장비를 단계적으로 개발하고, 시범망(퀀텀-일파넷) 구축

단기('23 ~ '26)	중·장기('26 ~)
- 양자정보 전송기술 구현	- 양자 중계기 구현을 위한 핵심 요소기술
- 초기 단계 양자 중계기 원천기술* 개발	(양자 메모리 플랫폼 기술 등) 개발·실용화
* 다중 얽힘 광원, 양자메모리, 파장변환기 등	- 양자기기 간 연결을 위한 시범망 구축

③ (양자내성암호) 양자컴퓨팅 시대에 대비한 양자내성암호체계 기반 구축

- (기술보급) 양자내성암호 원천·응용기술을 개발하고(~'24), 양자내성 암호 전환을 위한 검증기준 및 전환 가이드라인 마련('23~)
- (전환지원) 양자내성암호 안전성·성능 검증 시범사업을 추진하고('23~), 공공·금융·통신 등 주요 분야 우선 적용 추진('25~)

[2-1] 고성능 서비스 수용을 위한 기반 고도화

◇ 인터넷 트래픽 증가에 대비하여 안정적 망 품질 확보를 위해 기간망과 구내망을 고도화하고, 네트워크 관리체계 자동화·지능화 달성

① (기반시설) 구내망·백본망·해저케이블 등 기반 시설 고도화

- **(구나망)** 체감 인터넷 품질 개선을 위해 신축 건물에 광케이블 구축 전면화(23.6~)
- 시내전화 서비스를 인터넷전화로 대체 제공할 수 있도록 허용('22.12)하여 국사와 지역허브 간의 간선망 광(光)전환 투자 촉진('26년까지 2,500억원)
- (백본망) 광통신 및 전송 기술 고도화*를 통해 유무선 네트워크를 연결하는 백본망 전송 속도를 '26년까지 2배, '30년까지 4배 확대
 - * 테라비트급 광전송 기술 및 초정밀·고용량 전달망 기술 등 개발 추진('22~)

< 광통신 및 전송 기술 고도화 로드맵 >

장비명	As Is		To Be
패킷 전달	• 전송속도: 파장당 100Gbps		• '26년 200Gbps, '30년 400Gbps
신달 (POTN)	• 전송용량: 장비당 1.2~2.4Tbps	\Rightarrow	• '26년 8~16Tbps, '30년 32Tbps
다중화 전송	• 전송속도: 파장당 200~400Gbps		• '26년 800Gbps, '30년 1.6Tbps
선종 (ROADM)	• 전송용량: 장비당 17.6~24Tbps		• '26년 35.2Tbps, '30년 43.2Tbps

- ※ 패킷광전달망장비(POTN)는 시/도 내부의 국사간 연결, 광분기결합다중화전송장비(ROADM)는 시/도간 연결
- (해저케이블) 국제 해저케이블 용량을 점진적으로 확대·증설하고
 육양국을 추가 설치하여 글로벌 트래픽을 안정적으로 수용

< 해저케이블 확대·증설 방향 >

구분	As Is		To Be
육양국 다변화	• 부산·거제·태안 등 일부 지역	\Rightarrow	• ('30년) 제주 등 타 지역 추가 설치 를 통해 위험 분산
용량 확대	• '22년 기준 약 200Tbps		• ('30년) 해저케이블 추가 건설·임차를 통해 약 260Tbps 확보

2 (구축·운영체계) 디지털트윈·AI 등을 활용한 네트워크 관리 체계 혁신

- (통합관리체계 구축) 네트워크 설비의 체계적·안정적인 구축 및 관리를 위해 디지털 신기술을 활용한 전주기적 관리체계 확보 추진
 - 네트워크 인프라 설계부터 시공, 유지보수까지 전주기 정보를 통합 관리할 수 있도록 디지털트윈·BIM* 등 3차원 모델링 기술 확보**
 - * BIM(Building Information Modeling) : 3차원 입체 모델링 객체에 속성 정보를 부여, 설비별 全 생애주기 정보를 통합 관리하는 기술
- ** 네트워크 인프라의 3차원 데이터 모델링(BIM Building Information Modeling) 표준 개발 추진('23~)
- 이용자의 품질에 직접적 영향을 미치는 구내통신설비의 안정적
 품질 확보 및 장애 예방을 위한 유지관리 강화* 추진
- * 노후화된 건물의 구내망 등의 유지관리 모델 마련을 위한 실증 시범사업 추진 검토('23~)

< 네트워크 구축·관리 체계 고도화 방안 >

- (자동화 기술 도입) 네트워크 계층, 시설 및 장비 기종별로 상이한 운용·관리 체계를 자동화·지능화 기반의 첨단 시스템으로 고도화*
 - * '통신재난관리기본계획(매년 수립)'에 반영하여 망 관리 혁신 독려
 - 네트워크 장비 SW 化 및 인공지능(AI) 기술을 가입자 회선부터 품질관라 장애제어 영역까지 단계적으로 확대하여 완전 자동화·지능화 달성

< 자동화·지능화 로드맵 >

(1단계 : 현재)	(2단계 : ~'25)	(3단계 : ~'30)
부분 자동화	반(半)자동화	완전 자동화·지능화
- 신규/변경 개통/등록 자동화 - 정보수집 및 품질분석	- 점검/업그레이드/설계 자동화 - 장애 예측 및 제어	- 장애조치, 품질개선 자동화 - Self-Healing 구현

[2-2] 네트워크 저전력화를 통한 탄소중립 기여

◇ 에너지 절감을 위한 신기술을 개발하고, 통신장비 전력효율 최적화및 장비 개선을 통해 전력 소비를 줄이고 탄소중립에 기여

① (기술 개발) 통신용 AI 반도체 기술 및 전력 절감 기술 개발


- 에너지 절감을 위한 **통신용 AI반도체 기술***을 확보하고, **저전력** 설계 기술 및 고효율 신소자 기술 개발 추진
 - * 개발 로드맵 : 범용 AI 반도체를 6G 연구에 접목하여 실증·검증(~'26) → 6G 표준 등 요구사항을 반영한 통신용 AI 반도체 개발 검토('26~) → 6G 장비에 탑재하여 상용화 추진('30~)

< 저전력 설계·고효율 신소자 주요 기술 >

기지국	저전력·고집적 반도체 소자 개발 및 전력증폭기 저전력 설계기지국 내 장비 구조 설계 최적화	
중계기	주요 디지털 회로 저전력 설계선로구간 효율화 장비(PON) 저전력화	

② [네트워크 효율화] 전력 최적화를 통한 네트워크 에너지 절감

- 통신 분야 전력 소모의 대부분을 차지하는 **이동통신 기지국***에 **AI반도체** 및 **AI 기반 전력 최적화 시스템**을 적용하여 네트워크 저전력화 추진
 - * 통신 분야 전력 사용 비중: 기지국(73%), 코어망(13%), 데이터센터(9%), 기타(5%) < Al 기반 에너지 절감 시스템 >

[2-3] 안전하고 신뢰할 수 있는 네트워크 구현

◇ 기간통신 및 디지털 서비스 장애에 대비한 전주기 관리체계를 강화하고, 차세대 네트워크 보안 위협에 대응하기 위한 5G·6G 보안기술 확보

① (안전성) 기간통신-디지털서비스의 종합적 안전관리체계 구축

○ **(통신장애 예방 강화)** 태풍·화재·정전 등 외부요인과 작업오류·관리 부실 등 내부요인에 의한 네트워크 장애 예방·대비체계 강화

외부 장애	▶ (시설보강) 통신망-전력망 이원화 등 조치(~'23)	
대응	▶ (정전대응) 비상전원단자 연결 확대 및 기지국 등 예비전원 확충 강화('22~)
내부 장애	▶ (오류예방) 시스템 기반 중앙통제 등 작업관리 강화 (~'24)	1
대응	▶ (구조개선) 코어망 오류확산 방지장치 및 지역별 가입자망 분리 등 조치(~'23)

○ **(통신장애 복원력 제고)** 통신장애 발생 시 서비스의 신속복구를 위해 **통신사 간 상호백업체계 구축** 및 **재난와이파이** 등 **다양한 복원수단 마련** < 통신사 간 상호백업체계 구축 >

- (C지털 서비스 인정성 확보) 데이터센터의 물리적 안전조치 강화, 디지털 서비스의 중요도에 따른 체계적 다중화 등 全주기 재난관리 강화
 - 기간통신-데이터센터-디지털서비스의 종합적·체계적 안정성 관리 기반 마련을 위해, 분산된 규정을 종합한 '디지털서비스안전법(가칭)' 제정 추진

② [신뢰성] 차세대 네트워크 보안 기술 확보를 통한 신뢰 기반 구축

- 5G6G 등 차세대 네트워크의 새로운 보안 위협에 대응하기 위한 기술 확보
 - 5G 장비의 SW가상화, 분산화(MEC) 등 인프라 복잡성 대응 및 백도어 방지 기술을 확보하고, 기술 발전에 맞춰 보안 대응체계 고도화
 - 6G는 클라우드·AI의 보편화, 크리티컬 서비스 확대, 양자컴퓨팅 시대 도래 등 환경변화를 고려하여 초기 개발 단계부터 보안 기능 내재화 추진

3 튼튼하고 경쟁력 있는 산업 생태계 구축

[3-1] 클라우드·SW 기반 네트워크 산업 경쟁력 강화

◇ 클라우드·SW·오픈랜 등 新기술 성장기반을 확충하고, 민·관 및 대·중소 협력을 통한 해외시장 진출을 촉진하여 네트워크 산업 경쟁력 강화

① (클라우드·SW전환) 클라우드·SW 기반의 네트워크 산업 전환·고도화

- (SW 지원체계) 국내 기업이 취약한 네트워크 SW 역량 강화 및 사업화 등 지원을 위한 SW전문지원체계(가칭「SW하우스」) 구축 추진
 - * 네트워크 SW 기술 고도화부터 시험·검증, 유지보수, 기술지원까지 全주기 밀착 지원('24~)

- (솔루션 개발) 클라우드·SW 기반의 시험망 구축·고도화 및 서비스 수요 연계 실증 지원* 등을 통해 차세대 네트워크 솔루션 확보
 - * 초연결 지능형 연구개발망 구축·운영('20~'23), 지능형 초연결망 인프라 기반 조성('23~)

② [오픈랜 생태계 조성] 초기 시장 선점을 위한 성장 환경 구축

- (기술혁신) 오픈랜 핵심 장비·부품기술을 개발하고, 기능 성능 시험을 위한 테스트베드 구축 및 통신 3사 공동 「상호운용성 실증행시(Plugfest)」 매년 개최
 - * 5G 개방형 네트워크 핵심기술개발 사업('23~'27) 등
- (기반조성) 오픈랜 국제표준화 및 상용화 촉진을 위한 민·관 연합체를 운영 하고, 국내 기업의 시장 진출 지원을 위한 「국제인증 체계(K-OTIC)」구축

< 오픈랜 생태계 조성 로드맵 >

구분	단기(기반 마련, '22~)	중기(생태계 강화, '25~)	장기(시장 주도, '28~)
R&D	• O-RU/DU/CU 장비	• 소형 기자국 커버리지 확대 기술	• 핵심칩셋 및 지능화 기술
인프라	• 5G 기반 시험 환경 구축	• 가상화·지능화 환경 구축	• 6G 기반 시험 환경 고도화
테스트	• 글로벌 시험행사(PlugFest) 개최	• Field Test 시험 검증	• K-OTIC 거점 확대

③ [산업 기반 강화] 수요 창출 및 투자 촉진을 통해 산업 성장 기반 마련

- (수요창출) 공공시장 내 공정한 경쟁 환경 조성 및 국내에서 생산된 제품의 시장 진출을 촉진하여 국내 네트워크 산업 기반 강화
- ① (공정경쟁) 공공시장 장비 구축 사업 불공정행위 모니터링 및 전담지원체계 구축
- ② (생산지 증명) 국내에서 생산된 제품에 대한 민간인증체계 구축
- ③ (수요촉진) 공공사업 추진 시, 경쟁력 있는 국내 생산 우수 제품 도입 촉진
- (세제지원) 네트워크 기술·인프라에 대한 민간 투자 촉진을 위해 신성장·원천기술 대상 확대 및 범위 구체화 검토('23~)

< 네트워크 분야 세제 지원 강화 방안 >

분야	분야 As-Is		То-Ве	
신성장원천기술	•5G 및 6G 이동통신	\Rightarrow	· 5G·6G 기술 정의 구체화	
(R&D, 시설 투자)	(R&D 20~40%, 시설투자 3~12%)		(위성, 오픈랜, 지능화 등 기술변화 고려)	

④ (수출 활성화) 국제협력과 민·관 협력에 기반한 해외진출 모델 구축

- (국제협력) 우리 기업이 신뢰할 수 있는 제조사로서 글로벌 공급망에 적극 참여하도록 지원*하여 6G 장비 시장 점유율 확대** 추진
 - * 美 주도 14개국 간 인도-태평양경제프레임워크(IPEF) 內 디지털 인프라·공급망 논의 참여
 - ** 국내기업의 5G 장비 점유율(OMDIA, '21년) : 약 8.3% → 6G 장비 점유율 15% 목표
- 글로벌 디지털 연결성 확대를 위한 국가 간 협력을 강화하고, 해외 거점을 통한 시장 정보 수집·컨설팅을 수행하여 수출채널 확보
 - * G20-OECD 등 다자기구를 통한 국가 간 네트워크 협력 확대, ICT해외전시회 및 워크샵 개최참여
- (판로개척) ICT 수요가 증가하는 유망 지역(동남아·중동 등)을 대상으로 민·관 합동 '디지털 수출 개척단''을 파견하여 해외 신시장 진출 본격화
 - * 고위급 면담, 비즈니스 미팅, 투자설명회 등 종합 수출 로드쇼 개최('23, 2회→'24, 4회→'25, 6회)
- 통신사·제조사 해외사업 공동 참여를 촉진하고, 대·중소기업 공동 연구개발·시범 실증(POC) 지원을 통해 해외진출 기회 확대
- * (기존 사례) 통신사중소기업 공동으로 美 캘리포니아 주 전화선 인프라에 기가인터넷 실증사업 수행 ⇒ 향후에는 정부 차원에서 우수 시범사업 대상으로 해외 시장 안착 프로젝트 등 지원 검토

[3-2] 안정적 공급망 구축을 위한 소부장 경쟁력 확보

◇ 글로벌 통신 주권 확보를 위해 독자적 기술력 확보가 필요한 전략 품목을 발굴개발하고, 차세대 통신용 화합물 반도체 제조·공정기술을 확보

① (전략품목 자립화) 해외 의존도가 높은 통신용 핵심 부품 확보

- (핵심부품) 6G 등 차세대 단말·기지국 장비 등에 들어가는 주요 부품·소자 중 부가가치가 높은 핵심 품목을 선정하여 기술 개발
 - * 차세대 네트워크(6G) 산업 기술 개발 사업 등을 통해 핵심 품목 발굴·개발 추진
 - 핵심 부품에 대한 공급망 분석을 통해 기술 자립화, 상용화 가능성이
 높고, 독자적인 기술력 확보가 필요한 주요 품목 발굴

< 주요 핵심 개발품목 >

무선 통신	유선 광통신
◆ 전력증폭기, 빔포밍, RFIC, Full Duplex IC 칩	• 광원 광검출기 광스위치 등 광소자모듈 DSP IC 칩
◆ 오픈랜용 통신칩 (O-RU Low Phy IC) 등	• 패킷 프로세서 및 스위치 패브릭 칩 등

※ ICT 분야의 소부장 2.0 핵심전략품목, 미래선도품목 등과 연계하여 개발

- 개발 단계부터 수요(장비)·공급(부품)기업 및 기관 간 협력체계 구축을 통해 장비 제조사의 요구사항을 고려한 맞춤형 개발·검증

② [신소자 기술] 차세대 통신을 위한 화합물 반도체 기술 자립화

- 고주파수 대역에서 고출력·고효율의 특성을 갖는 「차세대 통신용 화합물 반도체(GaN)」 제조·공정 기술 확보 추진
 - 화합물 반도체 소재와 신소자를 일괄적으로 구현·검증할 수 있는 연구용 파운드리를 구축(~'26)하고 핵심 설계·제조기술(PDK* 등) 확보
 - * Process Design Kit: 파운드리 기업이 확보하여 고객사에 제공하는 반도체 제조 공정 데이터베이스 < 화합물반도체 공정기술개발 모델 >

산악연 R&D 기관	
연구용 파운드리 서비스 제공 및 기술 지원	_

공정장비 및 플랫폼 구축, 표준 공정 프로세스 개발·규격화

 \leftarrow

→	파운드리 기업
	화합물반도체
	공정 기술 이전

[3-3] 기술 혁신을 이끄는 차세대 전문인재 양성

◇ 6G·양자 등 차세대 기술 혁신을 뒷받침할 석·박사급 고급 인재와 네트워크 SW 등 시급한 실무인재 양성 병행 추진

① (고급인재) 전문 설계·연구 역량을 갖춘 최고급 인재 양성

- (특화센터) 석·박사급 인재 양성을 위해 네트워크 분야 대학 ICT연구센터(ITRC)를 오픈랜·SW·광통신 분야로 지속 확대
 - * '22년 10개 센터 운영(6G, 양자 등) → '26년까지 오픈랜·SW·광통신 등 15개 운영 목표
 - 글로벌 표준화 리더 양성을 위한 표준화 전문연구실 운영 강화*
 - * 6G 표준전문연구실 운영(21~) $\rightarrow 6G$ 국제 표준화 역량강화 및 리더쉽 확보 지원 과제 추가 추진(24~)
- (특성화 대학원) 차세대 네트워크 혁신을 이끄는 선도 연구자의 체계적 양성을 위한'(가칭)네트워크 특성화 대학원' 신설* 추진
 - * 일반 대학원의 프로젝트 중심 R&D와 차별화하여, 기업의 요구사항을 반영한 체계적 커리큘럼과 산·학 협력, 인턴십을 통해 현장 응용력과 문제해결역량을 강화

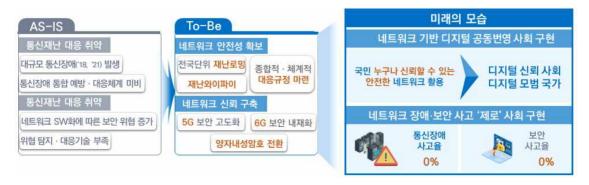
② (맞춤형 인재) 기업의 SW 인재 수요에 대응한 맞춤형 실무인재 양성

- (현장형 인재) 대학생·재직자·구직자 등 대상으로 네트워크의 新기술 발전 수요와 연계한 기업 맞춤형, 현장형 인재양성 과정 신설 추진
 - *「ICT 이노베이션스퀘어」 첫 네트워크 과정 신설(23~) 및 취업 연계 실무 인재양성 프로그램 등 신설 추진
 - 취약한 네트워크 SW 역량 집중 강화를 위한 특화 교육 과정* 마련
 - * 'SW 하우스' 사업 內 인력양성 및 네트워크 산업 재직자 위탁교육 프로그램 개발('24)
- (학사급 인재) 네트워크 인력의 저변 확대 및 실무 역량 강화를
 위해 대학 내 산업계 수요 기반의 융복합 네트워크 교육과정 신설 추진*
 - 채용 연계 및 현장실무능력 배양을 위한 중소·중견기업 계약학과 신설 추진*
 - * 현재 2개 운영 중(고려대·경북대 삼성) \rightarrow 향후 중소·중견기업과 수요 대학 매칭 추진

미래 변화된 모습(기대효과)

◇ [기술] 통신기술의 대도약으로 상상 속 세계가 현실화됩니다.

○ 6G시대에는 Upper-mid 대역, 지상·공간 통합망 등을 통해 공간확장 (UAM 등), 3D 가상융합(홀로그램 회의·커넥티드 제조) 등 서비스 실현 본격화


◇ [산업] 우리 네트워크가 명실상부 글로벌 생태계를 주도합니다.

○ 네트워크 구조의 **클라우드·SW 기반 전환**과 **소부장 경쟁력 강화**를 통해 **산업의** 高성장과 함께, 글로벌 네트워크 강소기업 등장 기대

◇ [사회] 모든 국민에게 안전한 디지털 신뢰 사회가 만들어집니다.

○ 세계 최고 품질의 네트워크를 누구나 끊김 없이 이용하고, 국민과 기업 모두가 안심하는 디지털 신뢰 사회·디지털 모범 국가 실현

붙임

과제별 추진일정 및 소관부처

과제명	추진일정	관계부처	
1. 세계 시장을 선도하는 차세대 네트워크 혁신			
1-1. 꿈의 통신 기술, 차세대 6G 기술 선도			
- 6G 핵심 기술 확보	′23~′28	과기정통부	
- 국제 표준 역량 강화	′23~′28	과기정통부	
1-2. 지상을 넘어 하늘까지 연결하는 위성통신	경쟁력 확도	1	
- 저궤도 위성통신 시범망 구축	′27~	과기정통부	
- 초공간 통신을 위한 핵심 기술 자립화	′24~	과기정통부	
1-3. 네트워크의 새로운 도전, 양자통신기술 선정	점		
- 유·무선 양자암호통신 기술 확보	′23~′25	과기정통부	
- 양자 인터넷 시범망 구축	′26~′30	과기정통부	
- 양자내성암호 기술개발	′23~′24	과기정통부	
2. 탄탄하고 안전한 네트워크 기반 강화			
2-1. 고성능 서비스 수용을 위한 기반 고도화			
- 신축건물 구내망 광케이블 설치 의무화	′23~	과기정통부	
- 백본망 전송 기술 고도화 및 용량 확대	′23~′30	과기정통부, 민간	
- 해저케이블 확대 및 육양국 다변화	′23~′30	민간	
- 네트워크 관리체계 혁신	′23~′30	과기정통부, 민간	
2-2. 네트워크 저전력화를 통한 탄소중립 기여			
- 저전력 통신장비·부품·소자 개발	′23~	과기정통부, 민간	
- AI 반도체 기술 확보	′25~′30	과기정통부	
2-3. 안전하고 신뢰할 수 있는 네트워크 구현			
- 장애 예방·대비 체계 강화	′23~′24	과기정통부, 민간	
- 상호백업체계 구축 및 이용자 복원 지원	~′23	민간	
- 5G·6G 보안 신기술 확보	′23~′24	과기정통부	

과제명	추진일정	관계부처	
3. 튼튼하고 경쟁력 있는 산업 생태계 구축			
3-1. 클라우드·SW 기반 네트워크 산업 생태계 전환			
- SW 하우스 구축	′24~′28	과기정통부	
- 오픈랜 성장 생태계 구축	′23~′27	과기정통부, 민간	
- 신성장·원천기술 추가 검토	′23~	기재부, 과기정통부	
- 해외시장 진출·협력 강화	′23~′25	과기정통부	
3-2. 소부장 경쟁력 확보			
- 차세대 통신용 핵심 부품 자립화	′23~	과기정통부	
- 화합물 반도체 공정 기술 개발	′24~′28	과기정통부	
3-3. 차세대 전문인재 양성			
- 네트워크 특화 센터 및 특성화 대학원 운영	′23~	과기정통부	
- SW 특성화 교육 프로그램 개발 및 운영	′24~′28	과기정통부	
- 네트워크 분야 계약학과 신설	′23~	과기정통부	